

Themis J. Michailides received his M.S. degree in irrigations from the University of Athens, Greece, and his M.S. and Ph. D. degrees from the University of California – Davis. He joined the faculty of the Univ of California-Berkeley for three years before becoming a faculty member of the Univ of Calif. Davis where he is currently a professor and plant pathologist located at the Kearney Agric.

AF36 in Almonds – Another Grower Tool for Aflatoxin Control in the Orchard

Themis Michailides

Current Cooperators: Ramon Jaime-Garcia, Teresa M. Garcia-Lopez, and John Lake

& Dr. Peter Cotty

USDA/ARS & University of Arizona, Tucson, AZ

AF36 Registration in Feb 2012

- Acreage: 330,000 acres
- In production: 250,000 acres
- Production: 690 million lbs. (= 313,500 tons of in shell pistachios)

AF36 Registration in Aug 2017

- Acreage: 1,110,000 acres
- In production: 900,000 acres
- Production: 2,050 million lbs. (= 930,000 tons of kernels)

AF36 Registration in Aug 2017

- Acreage: 7,500 acres
- In production: 7,000 acres
- Production: 21,000 lbs (= 9,560 tons of dried figs)

Molds that can produce aflatoxin in almond (also in pistachio and fig) orchards in California

Aspergillus flavus

Aspergillus parasiticus

Aspergillus flavus and A. parasiticus produce: Aflatoxins **B**₁, B₂, G₁, G₂, M₁

Frequency and tolerance limits of aflatoxin contamination in California almonds

Frequency: 1 nut in 32,000 nuts

In almonds "further processed": 12 ppb B1; & 15 total aflatoxin

Nut samples contaminated with aflatoxins

(data of Dried Fruit Association in Fresno from 1985-1989 aflatoxin analyses)

Life cycle of Aspergillus flavus in almond orchards

Relationship of navel orangeworm infestation and aflatoxin levels

Kings County 2016: Regression of Average Weekly NOW damage over time (Day 7 = August 28)

Association of NOW with aflatoxigenic fungi

Sticky traps with NOW moths

Effect of feeding sites (wounds) in almond on levels of aflatoxin contamination

Sanitation

Sanitation

Sanitation

Aspergillus flavus in almond orchards

S strain (small sclerotia): almost all toxigenic L strain (large sclerotia): 50%:50% toxigenic:atoxigenic

Delivery of AF36 inoculum for treatment of pistachio orchards in 2012

AF36 inoculum

As applied

Irrigation is needed for spore production

Sporulation

After growth of AF36

Sorghum is now used as a carrier of AF36 atoxigenic strain

After irrigation, the wet seeds will produce spores of AF36

Non-treated orchard

Treated Orchard

Library samples for aflatoxin analysis

Samples taken at processing plant as nuts are being unloaded.

<u>Reduction in aflatoxin-contaminated</u> pistachio samples (1st and 2nd harvests)

 2008
 2009
 2010
 2011
 2008-2011

 (Doster et al. (2014), Plant Disease 98:948-956)
 2010
 4 years average)

Reduction in aflatoxin-contaminated pistachio samples (2nd harvest)

Registration of *Aspergillus flavus* AF36 strain for use in pistachio in 2012

Since 2013, about 150,000 to 200,000 acres were treated yearly!

Occurrence of *A. flavus* atoxigenic strains in almond-growing counties of California

Each colored circle represents a different atoxigenic strain; = AF36

AF36 incidence: 3.0% to 8.5%

Reduction of aflatoxigenic Aspergillus flavus/A. parasiticus in areas of an almond orchard treated with the AF36

Ability of AF36 to reduce aflatoxins when co-inoculated with highly toxigenic isolates

Greater than 94% reduction in aflatoxins in comparison to levels in kernels inoculated with the toxigenic isolate alone

Burkard spore trap in a pistachio orchard

Registration of A. flavus AF36 Prevail

Conclusions of studies from the AF36 application in almonds

✓The AF36 persists well in the soil.

 \checkmark It does not cause any increase in nut decay.

✓ Results on almond were similar to pistachio results.

✓The atoxigenic strain AF36 Prevail[®] is registered now and can be applied in 2018.

Rate: 10 lbs per acre Application timing: Late May to early/mid-July

Some Challenges...

✓ Soil moisture (and temperature)
 ✓ Timing of application
 ✓ Harvest time
 ✓ Insect seed pests
 ✓ Predators

Effect of the <u>soil moisture</u> on sporulation of *Aspergillus flavus* (AF36 Prevail[®]) on grains of product

Inoculum dropped into a very wet soil will not produce any spores of AF36; it will decay

Warmer temperatures favor sporulation of the AF36 fungal strain on the AF36 product

Effect of date of application on sporulation of Aspergillus flavus strain AF36

Harvest and stockpiling

Hulls moisture <12%; kernel moisture 6%

Predation of grain by insects

Predation of grain and decay by other fungi

Roly polies

Fusarium spp.

Suggestions for best AF36 application

- ✓ The application method and product rate (10 lbs per acre) are the same as in other crops.
- ✓ Apply product in late May to <u>early / mid-July</u>.
- ✓ Irrigate within 3 days after application.
- ✓ Make sure that most of the inoculum will be spread in the areas wetted by irrigation.
- Avoid covering the inoculum by plowing or with too much water.
- ✓ Do not spray herbicides 1 to 2 weeks after application.
- ✓ Control the ants, other arthropods, and birds in the orchard.

<< This is a novel approach to reduce aflatoxin contamination >>

Link of video on application of AF36:

www.calpistachioresearch.org/training-videos/

Acknowledgments:

- Peter Cotty, USDA
- Michael Braverman
- Joel Siegel, USDA
- Jeff Palumbo, USDA
- Mark Doster
- David Morgan
- Ryan Puckett
- Lorene Boeckler
- Paulo Lichtemberg
- Matthias Donner
- Alejandro O. Beltran

- Ramon Jaime-Garcia
- Juan Moral
- Teresa M. Garcia-Lopez
- John Lake
- Peter Cotty, USDA

USDA/ARS, IR-4 Project/Biopesticide Branch, Almond Board of California, Calif. Pistachio Research Board, Calif. Fig Institute, ...

... and a multitude of growers